Physics 203 Formula Sheet - Optics

Index of refraction $n = \frac{c}{v}$ $\lambda = \frac{\lambda_o}{n}$ $f = f_o$ $E = E_o$ Snell's Law $n_1 \sin \theta_1 = n_2 \sin \theta_2$ Total internal reflection $\sin \theta_{\text{crit}} = \frac{n_2}{n_1}$ where $n_2 < n_1$ coming from material 1 Malus' Law for polarized light I = $I_{max} \cos^2 \theta$ Brewster's angle $\tan \theta_p = \frac{\pi_2}{n_1}$ coming from material 1 object-image for a spherical mirror $\frac{1}{s} + \frac{1}{s'} = \frac{2}{R} = \frac{1}{f}$ lateral magnification $m = \frac{y'}{v} = -\frac{s'}{s}$ lensmakers equation for a thin lens $\frac{1}{s} + \frac{1}{s'} = (n-1)\left(\frac{1}{R_{+}} + \frac{1}{R_{-}}\right) = \frac{1}{f}$ camera lens f-number = $\frac{\text{focal length}}{\text{aperature diameter}} = \frac{f}{D}$, camera stops increase exposure by X2 nearsighted means image for far object in front of retina; farsighted image behind retina magnifier angular magnification $\mathbf{M} = \frac{\theta_{observed}}{\theta_{actual}} \cong \frac{25 \text{ cm}}{f}$ microscope overall magnification = $m_{objective} M_{eyepiece} \cong \frac{(25 \text{ cm})s_o}{f_{obj}f_{eye}}$ terrestrial telescope angular magnification $M = -\frac{f_{obj}}{f_{out}}$ condition for constructive interference for two, distant, coherent sources a distance d apart $d\sin\theta = m\lambda$ $m = 0, \pm 1, \pm 2, \dots$ condition for destructive interference $\left(m + \frac{1}{2}\right)\lambda = d\sin\theta$ $m = 0, \pm 1, \pm 2, ...$ two source interference I = $I_0 \cos^2\left(\frac{\phi}{2}\right)$ reflection from higher index material cause a 180° phase shift; lower index material no phase shift energy of a photon $E = hf = \frac{hc}{\lambda}$ condition for <u>destructive</u> interference diffraction for a single slit, $a \sin \theta = m\lambda$ $m = 0, \pm 1, \pm 2, ...$ where intensity is $I = I_0 \left\{ \frac{\sin\left(\frac{\pi a(\sin\theta)}{\lambda}\right)}{\frac{\pi a(\sin\theta)}{2}} \right\}$ diffraction grating with spacing d, constructive interference occurs when $d\sin\theta = m\lambda$, $m = 0, \pm 1, \pm 2, \dots$

periodic crystal with plane spacing d, constructive interference occurs when $d \sin \theta = m\lambda$ $m = 0, \pm 1, \pm 2, ...$

for a circular aperture of diameter D the first dark ring occurs at $\sin \theta = 1.22 \frac{\lambda}{D}$